کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
494965 862810 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Autonomous profile-based anomaly detection system using principal component analysis and flow analysis
ترجمه فارسی عنوان
سیستم تشخیص آنومالی مبتنی بر مشخصات سیستم با استفاده از تجزیه و تحلیل مولفه اصلی و تجزیه و تحلیل جریان
کلمات کلیدی
مدیریت شبکه، مشخصات ترافیکی، تشخیص آنومالی، مشخصات ترافیکی، تجزیه و تحلیل مولفه اصلی، جریانها
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• An original anomaly detection system using principal component analysis is proposed.
• Our system was evaluated using real traffic data from a university.
• PCA proved effective in creating a digital signature of network traffic.
• Results pertaining to false alarm and accuracy rate are encouraging.
• Network anomalies were efficiently identified by our approach.

Different techniques and methods have been widely used in the subject of automatic anomaly detection in computer networks. Attacks, problems and internal failures when not detected early may badly harm an entire Network system. Thus, an autonomous anomaly detection system based on the statistical method principal component analysis (PCA) is proposed. This approach creates a network profile called Digital Signature of Network Segment using Flow Analysis (DSNSF) that denotes the predicted normal behavior of a network traffic activity through historical data analysis. That digital signature is used as a threshold for volume anomaly detection to detect disparities in the normal traffic trend. The proposed system uses seven traffic flow attributes: bits, packets and number of flows to detect problems, and source and destination IP addresses and Ports, to provides the network administrator necessary information to solve them. Via evaluation techniques performed in this paper using real network traffic data, results showed good traffic prediction by the DSNSF and encouraging false alarm generation and detection accuracy on the detection schema using thresholds.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 34, September 2015, Pages 513–525
نویسندگان
, , ,