کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
494975 862810 2015 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fuzzy adaptive genetic algorithm for multi-objective assembly line balancing problems
ترجمه فارسی عنوان
الگوریتم ژنتیک انطباق فازی برای مسائل ترازی مونتاژ چند هدفه
کلمات کلیدی
تعادل خط مونتاژ، الگوریتم ژنتیک سازگار، اپراتورهای تکاملی، اعداد فازی، کنترل کننده فازی پنجمین قانون موفقیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

This paper aims at multi-objective straight and U-shaped assembly line balancing problems with the fuzzy task processing times. The problems are referred to herein as f-SALBP and f-SULBP and the objectives that are considered to be satisfied are: (a) minimizing the numbers of stations, (b) maximizing the fuzzy line efficiency, (c) minimizing the fuzzy idleness percentage, and (d) minimizing the fuzzy smoothness index. In fact, the f-SALBP and f-SULBP are SALBP and SULBP generalization in fuzzy circumstance, respectively. Initially, the two problems are formulated and due to the uncertainty, variability and imprecision that often occurred in real-world production systems, the processing time of tasks are supposed as triangular fuzzy numbers. Then, to solve the problem, a hybrid multi-objective genetic algorithm is proposed. A One-Fifth Success Rule (OFSR) is deployed for the selection and mutation operators to improve the genetic algorithm's performance. The results in the genetic algorithm are being controlled in convergence and diversity simultaneously by means of controlling the selective pressure (SP) and mutation rate. Likewise, a fuzzy controller to SP is employed for the OFSR toward a better implementation of the genetic algorithm. In addition, the Taguchi design of experiments is used for parameter control and calibration. Finally, the numerical examples are presented to compare the performance of the proposed method with the existing ones. The results show significantly better performance for the proposed algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 34, September 2015, Pages 655–677
نویسندگان
, , ,