کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4949909 1440206 2016 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hamming weights of symmetric Boolean functions
ترجمه فارسی عنوان
وزنهای همگانی توابع بولین متقارن
کلمات کلیدی
توابع بولین، متقارن، وزن هامینگ، رقیب، ارزش والش،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
It has been known since 1996 (work of Cai et al.) that the sequence of Hamming weights {wt(fn(x1,…,xn))}, where fn is a symmetric Boolean function of degree d in n variables, satisfies a linear recurrence with integer coefficients. In 2011, Castro and Medina used this result to show that a 2008 conjecture of Cusick, Li and Stănică about when an elementary symmetric Boolean function can be balanced is true for all sufficiently large n. Quite a few papers have been written about this conjecture, but it is still not completely settled. Recently, Guo, Gao and Zhao proved that the conjecture is equivalent to the statement that all balanced elementary symmetric Boolean functions are trivially balanced. This motivates the further study of the weights of symmetric Boolean functions fn. In this paper we prove various new results on the trivially balanced functions. We also determine a period (sometimes the minimal one) for the sequence of weights wt(fn) modulo any odd prime p, where fn is any symmetric function, and we prove some related results about the balanced symmetric functions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 215, 31 December 2016, Pages 14-19
نویسندگان
,