کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4949948 1440207 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Packing non-zero A-paths via matroid matching
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Packing non-zero A-paths via matroid matching
چکیده انگلیسی
A Γ-labeled graph is a directed graph G in which each edge is associated with an element of a group Γ by a label function ψ:E(G)→Γ. For a vertex subset A⊆V(G), a path (in the underlying undirected graph) is called an A-path if its start and end vertices belong to A and does not intersect A in between, and an A-path is called non-zero if the ordered product of the labels along the path is not equal to the identity of Γ. Chudnovsky et al. (2006) introduced the problem of packing non-zero A-paths and gave a min-max formula for characterizing the maximum number of vertex-disjoint non-zero A-paths. In this paper, we show that the problem of packing non-zero A-paths can be reduced to the matroid matching problem on a certain combinatorial matroid, and discuss how to derive the min-max formula based on Lovász' idea of reducing Mader's S-paths problem to matroid matching.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 214, 11 December 2016, Pages 169-178
نویسندگان
, ,