کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4950508 1440646 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mining of high average-utility itemsets using novel list structure and pruning strategy
ترجمه فارسی عنوان
استخراج ابزارهای باالی ابزار متوسط ​​با استفاده از ساختار جدید لیست و استراتژی هرس
کلمات کلیدی
داده کاوی، معاونت حقوقی انجمن، استخراج معادن اقلام متوسط ​​متوسط،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
A novel algorithm for efficiently mining high average-utility itemsets is presented in this paper. The algorithm utilizes list structures, which compactly capture all information needed to calculate the actual average-utilities of itemsets so as to mine all high average-utility itemsets without the generation of candidate itemsets. The algorithm thus does not require any scanning of a given transactional database after initial two scans for constructing list structures of itemsets with 1-lengths. The algorithm can generate all high average-utility itemsets through its depth-first search based mining process, which is conducted by recursively constructing list structures of itemsets with (k+1)-lengths from list structures of itemsets with k-lengths. In order to avoid the expansion of unpromising itemsets that cannot be expanded to high average-utility itemsets, a novel pruning technique using tight upper-bounds of itemsets' average-utilities is designed and applied to the algorithm. Therefore, the runtime and memory efficiencies of the algorithm are able to be enhanced significantly because the search space of its mining process can be considerably reduced. Various experiments were performed by using four real datasets and two groups of synthetic datasets. Experimental results support that the proposed algorithm has runtime, memory, and scalability performances superior to those of existing algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 68, March 2017, Pages 346-360
نویسندگان
, ,