کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4950990 | 1441164 | 2017 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Segmentation of prostate contours for automated diagnosis using ultrasound images: A survey
ترجمه فارسی عنوان
جداسازی کانتورهای پروستات برای تشخیص خودکار با استفاده از تصاویر اولتراسوند: یک نظرسنجی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Prostate cancer is the most common cancer that affects elderly men. The conventional non-imaging screening test for prostate cancer like prostate antigen (PSA) and digital rectal examination (DRE) tests generally lack specificity. Ultrasound is the most commonly available, inexpensive, non-invasive, and radiation-free imaging modality among all the screening imaging modalities available for prostate cancer diagnosis. The precise segmentation of prostate contours in ultrasound images is crucial in applications such as the exact placement of needles during biopsies, computing the prostate gland volume, and to localize the prostate cancer. Moreover, the low-dose-rate (LDR) brachytherapy treatment in which radioactive seeds are implanted in the prostate region requires accurate contouring of the prostate gland in ultrasound images. Therefore, it is very important to segment the prostrate region accurately for the diagnosis and treatment. This paper aims to present the analysis of existing approaches used for the segmentation of prostate in transrectal ultrasound (TRUS) images. In this survey, different segmentation methods used to extract the prostrate using criteria such as mean absolute distance, Hausdorff distance and time are discussed in detail and compared.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Science - Volume 21, July 2017, Pages 223-231
Journal: Journal of Computational Science - Volume 21, July 2017, Pages 223-231
نویسندگان
Raman Preet Singh, Savita Gupta, U. Rajendra Acharya,