کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4951106 | 1364326 | 2016 | 40 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
TSIRM: A two-stage iteration with least-squares residual minimization algorithm to solve large sparse linear and nonlinear systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a two-stage iterative algorithm is proposed to improve the convergence of Krylov based iterative methods, typically those of GMRES variants. The principle of the proposed approach is to build an external iteration over the Krylov method, and to frequently store its current residual (at each GMRES restart for instance). After a given number of outer iterations, a least-squares minimization step is applied on the matrix composed by the saved residuals, in order to compute a better solution and to make new iterations if required. It is proven that the proposal has the same convergence properties as the inner embedded method itself. Several experiments have been performed using the PETSc toolkit (using default parameters in the absence of detail) to solve linear and nonlinear problems. They show good speedups compared to GMRES with up to 16,394 cores with different preconditioners.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Science - Volume 17, Part 3, November 2016, Pages 535-546
Journal: Journal of Computational Science - Volume 17, Part 3, November 2016, Pages 535-546
نویسندگان
Raphaël Couturier, Lilia Ziane Khodja, Christophe Guyeux,