کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
495171 862817 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evolving principal component clustering with a low run-time complexity for LRF data mapping
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Evolving principal component clustering with a low run-time complexity for LRF data mapping
چکیده انگلیسی


• A novel approach for data stream clustering to linear model prototypes.
• Good performance, robust operation, low computational complexity and simple implementation.
• Validation of results by comparison to well-known algorithms.

In this paper a new approach called evolving principal component clustering is applied to a data stream. Regions of the data described by linear models are identified. The method recursively estimates the data variance and the linear model parameters for each cluster of data. It enables good performance, robust operation, low computational complexity and simple implementation on embedded computers. The proposed approach is demonstrated on real and simulated examples from laser-range-finder data measurements. The performance, complexity and robustness are validated through a comparison with the popular split-and-merge algorithm.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 35, October 2015, Pages 349–358
نویسندگان
, ,