کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
495236 862821 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy
ترجمه فارسی عنوان
دینامیک بهینه سازی ذرات چند ذره با استراتژی یادگیری مشارکتی
کلمات کلیدی
بهینه ساز ذرات ذرات، بهینه ساز ذرات چند ذره چند دمی، استراتژی یادگیری تعاونی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• A new cooperative learning strategy is hybridized with DMS-PSO.
• Information can be exchanged among sub-swarms before the regrouping process.
• Experimental results show that DMS-PSO-CLS has a superior performance.

In this article, the dynamic multi-swarm particle swarm optimizer (DMS-PSO) and a new cooperative learning strategy (CLS) are hybridized to obtain DMS-PSO-CLS. DMS-PSO is a recently developed multi-swarm optimization algorithm and has strong exploration ability for the use of a novel randomly regrouping schedule. However, the frequently regrouping operation of DMS-PSO results in the deficiency of the exploitation ability. In order to achieve a good balance between the exploration and exploitation abilities, the cooperative learning strategy is hybridized to DMS-PSO, which makes information be used more effectively to generate better quality solutions. In the proposed strategy, for each sub-swarm, each dimension of the two worst particles learns from the better particle of two randomly selected sub-swarms using tournament selection strategy, so that particles can have more excellent exemplars to learn and can find the global optimum more easily. Experiments are conducted on some well-known benchmarks and the results show that DMS-PSO-CLS has a superior performance in comparison with DMS-PSO and several other popular PSO variants.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 29, April 2015, Pages 169–183
نویسندگان
, , , , ,