کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
495264 862822 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reconstruction of missing data in multidimensional time series by fuzzy similarity
ترجمه فارسی عنوان
بازسازی داده های گم شده در سری زمانی چند بعدی با شباهت فازی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• We address the problem of missing data in multidimensional time series.
• We propose a novel method based on a fuzzy similarity measure.
• The performance is compared with that of an Auto Associative Kernel Regression.
• The method is applied to shut-down transients of a Nuclear Power Plant (NPP) turbine.

The present work addresses the problem of missing data in multidimensional time series such as those collected during operational transients in industrial plants. We propose a novel method for missing data reconstruction based on three main steps: (1) computing a fuzzy similarity measure between a segment of the time series containing the missing data and segments of reference time series; (2) assigning a weight to each reference segment; (3) reconstructing the missing values as a weighted average of the reference segments. The performance of the proposed method is compared with that of an Auto Associative Kernel Regression (AAKR) method on an artificial case study and a real industrial application regarding shut-down transients of a Nuclear Power Plant (NPP) turbine.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 26, January 2015, Pages 1–9
نویسندگان
, , , ,