کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4953866 | 1443119 | 2017 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dimension reduction using kernel collaborative representation based projection
ترجمه فارسی عنوان
کاهش ابعاد با استفاده از نمایشگر مبتنی بر نمایندگی مشارکت هسته
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
کاهش ابعاد، نمایندگی همکاری، روش کرنل، تشخیص چهره،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
Dimension reduction plays a key role in pattern recognition. Sparsity preserving projection (SPP) and collaborative representation based projection (CRP) are two up-to-date dimension reduction methods. SPP uses sparse representation for dimension reduction and CRP uses collaborative representation. SPP and CRP both have good performances in dimension reduction and CRP is computationally more efficient than SPP. To make CRP more effective for linear inseparable data, we propose kernel collaborative representation based projection (KCRP) in this paper. In KCRP, the original data is mapped into a higher dimensional space by a nonlinear mapping and collaborative representation is performed in this new space by using kernel trick. Then, the low dimensional features are obtained by preserving the collaborative reconstructive relation. Experiments on AR, ORL and FERET databases show that KCRP performs better than SPP, CRP and some other popular dimension reduction methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: AEU - International Journal of Electronics and Communications - Volume 81, November 2017, Pages 23-30
Journal: AEU - International Journal of Electronics and Communications - Volume 81, November 2017, Pages 23-30
نویسندگان
Jun Yin, Zhihui Lai, Hui Yan,