کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4954151 1443128 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Compressed sensing based foreground detection vector for object detection in Wireless Visual Sensor Networks
ترجمه فارسی عنوان
بردار تشخیص پیش زمینه بر اساس سنسور فشرده برای تشخیص شی در شبکه های حسگر بی سیم ویژوال
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
Compressed sensing based background subtraction (CS-BS) plays a significant role in video surveillance applications in Wireless Visual Sensor Networks. This paper implements a CS-BS framework with a novel thresholding strategy to detect the anomaly with fewer measurements in a secured indoor environment. In CS-BS, the CS is performed on the difference frame which is sparse, thereby reducing energy, memory and bandwidth. In this framework, a foreground threshold is proposed based on the measurement matrix to extract the moving object from a scene. The performance of the CS-BS framework with FDV is evaluated using metrics such as detection accuracy, energy complexity, percentage of reduction in samples and measurements. The proposed CS-BS framework with hybrid matrix based FDV achieves around 95.8% reduction of measurements and 91% reduction of samples.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: AEU - International Journal of Electronics and Communications - Volume 72, February 2017, Pages 216-224
نویسندگان
, , ,