کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4955092 | 1444178 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel statistical and multiscale local binary feature for 2D and 3D face verification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we propose a face verification framework using 2D and 3D images. We first introduce a novel face descriptor based on the local statistics of the 2D and 3D images. In the proposed framework, the novel descriptor is combined with three other popular and effective local descriptors, namely, Local Binary Patterns (LBP), Local Phase Quantization (LPQ) and Binarized Statistical Image Features (BSIF). The multiscale variants of these four descriptors are investigated seeking better performance. To reduce the feature vector dimensionality and mitigate the class intra-variability, we use Exponential Discriminant Analysis (EDA) and Within Class Covariance Normalization (WCCN), respectively. Finally, a score level fusion scheme is adopted to combine different face descriptors and modalities. An extensive evaluation of the proposed framework is carried out on two publicly available and largely used 2D+3D face databases, namely FRGC v2.0 and CAISA 3D. Promising results that favorably compare to the state of the art are obtained.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 62, August 2017, Pages 68-80
Journal: Computers & Electrical Engineering - Volume 62, August 2017, Pages 68-80
نویسندگان
Abdelmalik Ouamane, Elhocine Boutellaa, Messaoud Bengherabi, Abdelmalik Taleb-Ahmed, Abdenour Hadid,