کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4955236 1444182 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
MRI brain tissue classification using unsupervised optimized extenics-based methods
ترجمه فارسی عنوان
طبقه بندی مغز استخوان مغز با استفاده از روش های مبتنی بر بهینه سازی بی نظیر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
MRI has been a rather important imaging technique in clinical diagnosis in recent years. In particular, brain parenchyma classification and segmentation of normal and pathological tissue is the first step of addressing a wide range of clinical problems. Extenics-based methods are applied in this study for MRI brain tissue classification. Initially, the standard deviation target generation process is employed to select the center point of the extenics-based correlation function without supervision. Then particle swarm optimization is used to modify the extenics-based correlation function. In subsequence, the modified extenics-based correlation function is employed to perform classification using individual images to present the gray matter, white matter and cerebral spinal fluid in the brain. Therefore the proposed method reduce the burden of physicians from huge amounts of multi-spectral information in MR images to make diagnostic work more efficient and more accurate.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 58, February 2017, Pages 489-501
نویسندگان
, , ,