کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4956451 | 1444520 | 2017 | 64 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A similarity query system for road traffic data based on a NoSQL document store
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Advancements in sensing and communication technologies are enabling intelligent transportation systems (ITS) to easily acquire large volumes of road traffic big data. Querying road traffic data is a crucial task for providing citizens with more insightful information on traffic conditions. In this paper, we have developed a similarity query system for road traffic big data, called SigTrac, that runs on top of an existing MongoDB document store. The SigTrac system represents road traffic sensor data having spatio-temporal characteristics into traffic matrices and stores them into a MongoDB NoSQL document store by exploiting map-reduce operations of MongoDB. In addition, SigTrac efficiently processes similarity queries for traffic data with singular value decomposition (SVD)-based and incremental SVD-based algorithms. Our experimental studies with real traffic data demonstrate the efficiency of SiqTrac for similarity query processing for road traffic big data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Systems and Software - Volume 127, May 2017, Pages 28-51
Journal: Journal of Systems and Software - Volume 127, May 2017, Pages 28-51
نویسندگان
Titus Irma Damaiyanti, Ardi Imawan, Fitri Indra Indikawati, Yoon-Ho Choi, Joonho Kwon,