کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4956840 | 1364712 | 2016 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
MapReduce short jobs optimization based on resource reuse
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Hadoop is an open-source implementation of MapReduce serving for processing large datasets in a massively parallel manner. It was designed aiming at executing large-scale jobs in an enormous number of computing nodes offering computing and storage. However, Hadoop is frequently employed to process short jobs. In practice, short jobs suffer from poor response time and run inefficiently. To fill this gap, this paper analyses the process of job execution and depicts the existing issues why short jobs run inefficiently in Hadoop. According to the characteristic of task execution in multi-wave under cluster overload, we develop a mechanism in light of resource reuse to optimize short jobs execution. This mechanism can reduce the frequency of resource allocation and recovery. Experimental results suggest that the developed mechanism based on resource reuse is able to improve effectiveness of the resource utilization. In addition, the runtime of short jobs can be significantly reduced.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microprocessors and Microsystems - Volume 47, Part A, November 2016, Pages 178-187
Journal: Microprocessors and Microsystems - Volume 47, Part A, November 2016, Pages 178-187
نویسندگان
Shi Yuliang, Zhang Kaihui, Cui Lizhen, Liu Lei, Zheng Yongqing, Zhang Shidong, Yu Han,