کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4959133 1445470 2017 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Visualizing proportions and dissimilarities by Space-filling maps: A Large Neighborhood Search approach
ترجمه فارسی عنوان
نمایش مقادیر و ناهماهنگی با نقشه های فضایی پر کردن: رویکرد جستجوی محله بزرگ
کلمات کلیدی
تجسم داده ها، اتصال جعبه، همبستگی، ناهماهنگی ها، جستجوی بزرگ محله
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی
In this paper we address the problem of visualizing a set of individuals, which have attached a statistical value given as a proportion, and a dissimilarity measure. Each individual is represented as a region within the unit square, in such a way that the area of the regions represent the proportions and the distances between them represent the dissimilarities. To enhance the interpretability of the representation, the regions are required to satisfy two properties. First, they must form a partition of the unit square, namely, the portions in which it is divided must cover its area without overlapping. Second, the portions must be made of a connected union of rectangles which verify the so-called box-connectivity constraints, yielding a visualization map called Space-filling Box-connected Map (SBM). The construction of an SBM is formally stated as a mathematical optimization problem, which is solved heuristically by using the Large Neighborhood Search technique. The methodology proposed in this paper is applied to three real-world datasets: the first one concerning financial markets in Europe and Asia, the second one about the letters in the English alphabet, and finally the provinces of The Netherlands as a geographical application.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Operations Research - Volume 78, February 2017, Pages 369-380
نویسندگان
, , ,