کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4960097 | 1445969 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Relevant states and memory in Markov chain bootstrapping and simulation
ترجمه فارسی عنوان
حالت های مربوطه و حافظه در بوت استرپینگ و شبیه سازی زنجیره مارکف
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
بوت استرپینگ، تئوری اطلاعات، زنجیره مارکوف، بهینه سازی، شبیه سازی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
چکیده انگلیسی
Markov chain theory is proving to be a powerful approach to bootstrap and simulate highly nonlinear time series. In this work, we provide a method to estimate the memory of a Markov chain (i.e. its order) and to identify its relevant states. In particular, the choice of memory lags and the aggregation of irrelevant states are obtained by looking for regularities in the transition probabilities. Our approach is based on an optimization model. More specifically, we consider two competing objectives that a researcher will in general pursue when dealing with bootstrapping and simulation: preserving the “structural” similarity between the original and the resampled series, and assuring a controlled diversification of the latter. A discussion based on information theory is developed to define the desirable properties for such optimal criteria. Two numerical tests are developed to verify the effectiveness of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 256, Issue 1, 1 January 2017, Pages 163-177
Journal: European Journal of Operational Research - Volume 256, Issue 1, 1 January 2017, Pages 163-177
نویسندگان
Roy Cerqueti, Paolo Falbo, Cristian Pelizzari,