کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4960319 1446450 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Currency recognition using a smartphone: Comparison between color SIFT and gray scale SIFT algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Currency recognition using a smartphone: Comparison between color SIFT and gray scale SIFT algorithms
چکیده انگلیسی

Banknote recognition means classifying the currency (coin and paper) to the correct class. In this paper, we developed a dataset for Jordanian currency. After that we applied automatic mobile recognition system using a smartphone on the dataset using scale-invariant feature transform (SIFT) algorithm. This is the first attempt, to the best of the authors knowledge, to recognize both coins and paper banknotes on a smartphone using SIFT algorithm. SIFT has been developed to be the most robust and efficient local invariant feature descriptor. Color provides significant information and important values in the object description process and matching tasks. Many objects cannot be classified correctly without their color features. We compared between two approaches colored local invariant feature descriptor (color SIFT approach) and gray image local invariant feature descriptor (gray SIFT approach). The evaluation results show that the color SIFT approach outperforms the gray SIFT approach in terms of processing time and accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of King Saud University - Computer and Information Sciences - Volume 29, Issue 4, October 2017, Pages 484-492
نویسندگان
, ,