کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4960669 1446503 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Big data analysis to Features Opinions Extraction of customer
ترجمه فارسی عنوان
تجزیه و تحلیل داده های بزرگ به نظرات استخراج مشتری
کلمات کلیدی
اطلاعات بزرگ، تجزیه و تحلیل احساسات، نظر معادن، معدن ویژگی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

Opinion mining refers to extract subjective information from text data using tools such as natural language processing (NLP), text analysis and computational linguistics. Micro-blogging and social network are the most popular Web 2.0 applications, like Twitter and Facebook which are developed for sharing opinions about different topics. This kind of application becomes a rich data source for opinion mining and sentiment analysis. This information is crucial for managers, who should improve the quality of a product based on customers' opinions. Concerning the characteristic of a product as mobile phone, it is particularly difficult to identify the features being commented on (e.g., camera quality, battery life, price, etc).In our work, we present a new method that able to extract product features opinions of customer from social networks using text analysis techniques. This task identifies customers opinions regarding product features. We develop a system for retrieving tweets about a product from Twitter and detect product features opinions and their polarity. To validate the effectiveness of this approach, we used a dataset published by Bing Lius group in our approach experimentation. This dataset contains many notated customer reviews of five products such as Canon G3 and Nokia 6610. Next, we test this method with tweets retrieved from Twitter about Nokia, Samsung and Iphone features products.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 112, 2017, Pages 906-916
نویسندگان
, ,