کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4961683 1446513 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Hybrid KNN-SVM Model for Iranian License Plate Recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
A Hybrid KNN-SVM Model for Iranian License Plate Recognition
چکیده انگلیسی

This study presents a new method for Iranian License plate recognition systems that will increase the accuracy and decrease the costs of the recognition phase of these systems. In this regard, ahybrid of the k-Nearest Neighbors algorithmand the Multi-Class Support Vector Machines (KNN-SVM) model was developedin the study. K-NN was used as the first classification model as it is simple, robust against noisy data set and effective fora large data set. The confusion among the license plate similar characters problem was overcome by using the multiple SVMs classification model. The SVMs model has improved the performance of the K-NN in the recognition of similar characters. The current study experimental results revealed that there is a significant improvement in the character recognition phase rate compared with a similar study.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 102, 2016, Pages 588-594
نویسندگان
, ,