کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4962191 1446526 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recommender System for Academic Literature with Incremental Dataset
ترجمه فارسی عنوان
سیستم توصیه شده برای ادبیات علمی با مجموعه داده های افزوده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

On account of the colossal expansion in the size of research paper repository, the stature of Recommender System has increased, as it can guide the researchers to find papers akin to them from this vast collection. Furthermore, the recommendation methods like collaborative-filtering or content-based do not allow the user's to provide their personalized requirements explicitly; hence the focus is shifted towards the customized Recommender Systems that can scrutinize user's preferences by contemplating their inputs. But the state-of-art recommendation techniques satisfying user's personalized requirements make a strong assumption of static dataset. So, in this work we are going to present a customized Recommender System that can acknowledge the ever growing nature of research paper repository. To accomplish this, the Efficient Incremental High-Utility Itemset Mining algorithm (EIHI), which has been recently introduced in the literature, is used which is specialized to work with dynamic datasets. Experimental results prove that the proposed system satisfies the researcher's personalized requirements and at the same time handles the incremental nature of the research paper repository efficiently.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 89, 2016, Pages 483-491
نویسندگان
, ,