کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4962513 1446616 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neuro-fuzzy Soft Sensor Estimator for Benzene Toluene Distillation Column
ترجمه فارسی عنوان
سنسور نرم سنسور نازک فازی برای ستون تقطیر بنزن تولوئن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

The distillation is widely used separation technique in oil and gas refineries. Accurate measurement of the composition of separated constituents is necessary to estimate the purity of the products. Composition measurement using online analysers causes process delay and requires large initial investment. As a solution to this problem, soft sensor estimators can be used to determine the composition of separated product. In this work soft sensor estimators are used for predicting top and bottom compositions in benzene toluene distillation column. More sensitive tray temperatures, re-boiler duty and reflux rate (measured variables) of distillation column were used to predict top and bottom composition (unmeasured). Data used for soft sensor based estimation are generated using process simulation software HYSYS. NARX based ANFIS algorithm was proposed for soft sensor modelling. In this method, most influential inputs for soft sensor modelling were selected using exhaustive search. Neural network model and ANFIS model are also compared using statistical criteria like root mean square error and correlation coefficient (R2) values. It has been shown by the results that ANFIS performs better while comparing neural network method and ANFIS with the same number of iteration.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Technology - Volume 25, 2016, Pages 92-99
نویسندگان
, ,