کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4963166 | 1447002 | 2017 | 41 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Kriging-assisted multiobjective evolutionary algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A surrogate-assisted (SA) evolutionary algorithm for Multiobjective Optimization Problems (MOOPs) is presented as a contribution to Soft Computing (SC) in Artificial Intelligence (AI). Such algorithm is grounded on the cooperation between a “pure” evolutionary algorithm and a Kriging based algorithm featuring the Expected Hyper-Volume Improvement (EHVI) metric. Comparison with state-of-art pure and Kriging-assisted algorithms over two- and three-objective test functions have demonstrated that the proposed algorithm can achieve high performance in the approximation of the Pareto-optimal front mitigating the drawbacks of its parent algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 58, September 2017, Pages 155-175
Journal: Applied Soft Computing - Volume 58, September 2017, Pages 155-175
نویسندگان
Giovanni Venturelli, Ernesto Benini, Åukasz Åaniewski-WoÅÅk,