کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4963654 | 1447051 | 2017 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Corral framework: Trustworthy and fully functional data intensive parallel astronomical pipelines
ترجمه فارسی عنوان
چارچوب چارچوب: داده های قابل اعتماد و کاملا کاربردی، خطوط موازی نجومی موازی را افزایش می دهند
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Data processing pipelines represent an important slice of the astronomical software library that include chains of processes that transform raw data into valuable information via data reduction and analysis. In this work we present Corral, a Python framework for astronomical pipeline generation. Corral features a Model-View-Controller design pattern on top of an SQL Relational Database capable of handling: custom data models; processing stages; and communication alerts, and also provides automatic quality and structural metrics based on unit testing. The Model-View-Controller provides concept separation between the user logic and the data models, delivering at the same time multi-processing and distributed computing capabilities. Corral represents an improvement over commonly found data processing pipelines in astronomysince the design pattern eases the programmer from dealing with processing flow and parallelization issues, allowing them to focus on the specific algorithms needed for the successive data transformations and at the same time provides a broad measure of quality over the created pipeline. Corral and working examples of pipelines that use it are available to the community at https://github.com/toros-astro.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Astronomy and Computing - Volume 20, July 2017, Pages 140-154
Journal: Astronomy and Computing - Volume 20, July 2017, Pages 140-154
نویسندگان
J.B. Cabral, B. Sánchez, M. Beroiz, M. DomÃnguez, M. Lares, S. Gurovich, P. Granitto,