کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
496380 862857 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combining multiple classifiers to quantitatively rank the impact of abnormalities in flight data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Combining multiple classifiers to quantitatively rank the impact of abnormalities in flight data
چکیده انگلیسی

This paper presents a novel two phase method that combines one class support vector machine classifiers using combination rules to quantitatively assess the degree of abnormality at various heights during individual aircraft descents and also over the whole descent. Whilst classifiers have been combined before in the literature with success, it is the first time they have been applied to the problem of analysing the act of descending of commercial jet aircraft. The method is tested on artificial Gaussian data and flight data from an industrial partner, Flight Data Services Ltd., the world's leading flight data analysis provider, with promising results.

Figure optionsDownload as PowerPoint slideHighlights
► Abnormalities in flight data are quantified.
► Overall abnormality is computed from the abnormalities at each height in the descent.
► Method shows how classifiers can be successfully combined using combination rules.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 12, Issue 8, August 2012, Pages 2583–2592
نویسندگان
, , ,