کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4963819 1447411 2017 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Energy consistent framework for continuously evolving 3D crack propagation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Energy consistent framework for continuously evolving 3D crack propagation
چکیده انگلیسی


- A new formulation for 3D brittle fracture in elastic solids within the context of configurational mechanics.
- Continuous resolution of evolving crack path exploiting the crack front equilibrium equation.
- Monolithic solution strategy for solving both material displacements (i.e. crack extension) and spatial displacements.
- Problem-specific mesh smoothing with surface constraints.

This paper presents an enhanced theoretical formulation and associated computational framework for brittle fracture in elastic solids within the context of configurational mechanics, building on the authors' previous paper, Kaczmarczyk et al. (2014). The local form of the first law of thermodynamics provides an equilibrium condition for the crack front, expressed in terms of the configurational forces. Applying the principle of maximal energy dissipation, it is shown that the direction of the crack propagation is given by the direction of the configurational forces. In combination with a fracture criterion, these are utilised to determine the position of the continuously evolving crack front. This exploitation of the crack front equilibrium condition leads to a completely new, implicit, crack propagation formulation. A monolithic solution strategy is adopted, solving simultaneously for both the material displacements (i.e. crack extension) and the spatial displacements. The resulting crack path is resolved as a discrete displacement discontinuity, where the material displacements of the nodes on the crack front change continuously, without the need for mesh splitting or the use of enrichment techniques. In order to trace the dissipative loading path, an arc-length procedure is adopted that controls the incremental crack area growth. In order to maintain mesh quality, smoothing of the mesh is undertaken as a continuous process, together with face flipping, node merging and edge splitting where necessary. Hierarchical basis functions of arbitrary polynomial order are adopted to increase the order of approximation without the need to change the finite element mesh. Performance of the formulation is demonstrated by means of three representative numerical simulations, demonstrating both accuracy and robustness.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 324, 1 September 2017, Pages 54-73
نویسندگان
, , ,