کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4963828 | 1447411 | 2017 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A consistent multi-resolution smoothed particle hydrodynamics method
ترجمه فارسی عنوان
یک روش هیدرودینامیک ذرات نرمال با چند وضوح ثابت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
We seek to accelerate and increase the size of simulations for fluid-structure interactions (FSI) by using multiple resolutions in the spatial discretization of the equations governing the time evolution of systems displaying two-way fluid-solid coupling. To this end, we propose a multi-resolution smoothed particle hydrodynamics (SPH) approach in which subdomains of different resolutions are directly coupled without any overlap region. The second-order consistent discretization of spatial differential operators is employed to ensure the accuracy of the proposed method. As SPH particles advect with the flow, a dynamic SPH particle refinement/coarsening is employed via splitting/merging to maintain a predefined multi-resolution configuration. Particle regularity is enforced via a particle-shifting technique to ensure accuracy and stability of the Lagrangian particle-based method embraced. The convergence, accuracy, and efficiency attributes of the new method are assessed by simulating four different flows. In this process, the numerical results are compared to the analytical, finite element, and consistent SPH single-resolution solutions. We anticipate that the proposed multi-resolution method will enlarge the class of SPH-tractable FSI applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 324, 1 September 2017, Pages 278-299
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 324, 1 September 2017, Pages 278-299
نویسندگان
Wei Hu, Wenxiao Pan, Milad Rakhsha, Qiang Tian, Haiyan Hu, Dan Negrut,