کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4963875 1447415 2017 71 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computational anisotropic hardening multiplicative elastoplasticity based on the corrector elastic logarithmic strain rate
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Computational anisotropic hardening multiplicative elastoplasticity based on the corrector elastic logarithmic strain rate
چکیده انگلیسی
In this paper we present a new computational framework for anisotropic elastoplasticity with mixed hardening which presents the following characteristics: (1) it is motivated by a one-dimensional rheological model where the main differences are due to geometric nonlinearities and three-dimensional effects; (2) it uses the Lee multiplicative decomposition; (3) it is valid for anisotropic yield functions; (4) it is valid for any anisotropic stored energy, either linear or nonlinear in logarithmic strains; (5) it is valid for (non-moderate) large elastic strains; (6) it results in a six-dimensional additive corrector update, parallel to that of the infinitesimal theory; (7) it does not explicitly employ plastic strain tensors or plastic metrics, circumventing definitely the “rate issue”; (8) the incremental plastic flow is isochoric using a simple backward-Euler scheme, without explicitly using exponential mappings; (9) no hypothesis is needed for the plastic spin in order to integrate the symmetric flow derived from the dissipation equation; (10) the Mandel stress tensor plays no role in the formulation; (11) it yields a fully symmetric algorithmic linearization consistent with its associative nature and the principle of maximum dissipation; and (12) it recovers the formulation of Simó for isotropy as a particular case.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 320, 15 June 2017, Pages 82-121
نویسندگان
, , ,