کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4964083 1447424 2016 23 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
A posteriori pointwise error computation for 2-D transport equations based on the variational multiscale method
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A posteriori pointwise error computation for 2-D transport equations based on the variational multiscale method
چکیده انگلیسی
This article presents a general framework to estimate the pointwise error of linear partial differential equations. The error estimator is based on the variational multiscale theory, in which the error is decomposed in two components according to the nature of the residuals: element interior residuals and inter-element jumps. The relationship between the residuals (coarse scales) and the error components (fine scales) is established, yielding to a very simple model. In particular, the pointwise error is modeled as a linear combination of bubble functions and Green's functions. If residual-free bubbles and the classical Green's function are employed, the technology leads to an exact explicit method for the pointwise error. If bubble functions and free-space Green's functions are employed, then a local projection problem must be solved within each element and a global boundary integral equation must be solved on the domain boundary. As a consequence, this gives a model for the so-called fine-scale Green's functions. The numerical error is studied for the standard Galerkin and SUPG methods with application to the heat equation, the reaction-diffusion equation and the convection-diffusion equation. Numerical results show that stabilized methods minimize the propagation of pollution errors, which stay mostly locally.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 311, 1 November 2016, Pages 648-670
نویسندگان
, ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت