کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4964085 1447424 2016 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models
ترجمه فارسی عنوان
در قوام بین تقارن پریودینامیکی نزدیکترین همسایه و مدل های کشش کلاسیک مخالف
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
The peridynamic theory of solid mechanics is a nonlocal reformulation of the classical continuum mechanics theory. At the continuum level, it has been demonstrated that classical (local) elasticity is a special case of peridynamics. Such a connection between these theories has not been extensively explored at the discrete level. This paper investigates the consistency between nearest-neighbor discretizations of linear elastic peridynamic models and finite difference discretizations of the Navier-Cauchy equation of classical elasticity. Although nearest-neighbor discretizations in peridynamics have been numerically observed to present grid-dependent crack paths or spurious microcracks, this paper focuses on a different, analytical aspect of such discretizations. We demonstrate that, even in the absence of cracks, such discretizations may be problematic unless a proper selection of weights is used. Specifically, we demonstrate that using the standard meshfree approach in peridynamics, nearest-neighbor discretizations do not reduce, in general, to discretizations of corresponding classical models. We study nodal-based quadratures for the discretization of peridynamic models, and we derive quadrature weights that result in consistency between nearest-neighbor discretizations of peridynamic models and discretized classical models. The quadrature weights that lead to such consistency are, however, model-/discretization-dependent. We motivate the choice of those quadrature weights through a quadratic approximation of displacement fields. The stability of nearest-neighbor peridynamic schemes is demonstrated through a Fourier mode analysis. Finally, an approach based on a normalization of peridynamic constitutive constants at the discrete level is explored. This approach results in the desired consistency for one-dimensional models, but does not work in higher dimensions. The results of the work presented in this paper suggest that even though nearest-neighbor discretizations should be avoided in peridynamic simulations involving cracks, such discretizations are viable, for example for verification or validation purposes, in problems characterized by smooth deformations. Moreover, we demonstrate that better quadrature rules in peridynamics can be obtained based on the functional form of solutions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 311, 1 November 2016, Pages 698-722
نویسندگان
, , ,