کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4964130 | 1447418 | 2017 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An admissibility and asymptotic preserving scheme for systems of conservation laws with source term on 2D unstructured meshes with high-order MOOD reconstruction
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The aim of this work is to design an explicit finite volume scheme with high-order MOOD reconstruction for specific systems of conservation laws with stiff source terms which degenerate into diffusion equations. We propose a general framework to design an asymptotic preserving scheme that is stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and diffusive regimes for any 2D unstructured mesh. Moreover, the developed scheme also preserves the set of admissible states, which is mandatory to conserve physical solutions in stiff configurations. This construction is achieved by using a non-linear scheme as a target scheme for the limit diffusion equation, which gives the form of the global scheme for the full system. The high-order polynomial reconstructions allow to improve the accuracy of the scheme without getting a full high-order scheme. Numerical results are provided to validate the scheme in every regime.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 317, 15 April 2017, Pages 836-867
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 317, 15 April 2017, Pages 836-867
نویسندگان
F. Blachère, R. Turpault,