کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
496466 | 862860 | 2007 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Genetic programming for epileptic pattern recognition in electroencephalographic signals
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper reports how the genetic programming paradigm, in conjunction with pattern recognition principles, can be used to evolve classifiers capable of recognizing epileptic patterns in human electroencephalographic signals. The procedure for feature extraction from the raw signal is detailed, as well as the genetic programming system that properly selects the features and evolves the classifiers. Based on the data sets used, two different epileptic patterns were detected: 3 Hz spike-and-slow-wave-complex (SASWC) and spike-or-sharp-wave (SOSW). After training, classifiers for both patterns were tested with unseen instances, and achieved sensibility = 1.00 and specificity = 0.93 for SASWC patterns, and sensibility = 0.94 and specificity = 0.89 for SOSW patterns. Results are very promising and suggest that the methodology presented can be applied to other pattern recognition tasks in complex signals.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 7, Issue 1, January 2007, Pages 343-352
Journal: Applied Soft Computing - Volume 7, Issue 1, January 2007, Pages 343-352
نویسندگان
Heitor S. Lopes,