کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
496494 862861 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Simulation optimization based on Taylor Kriging and evolutionary algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Simulation optimization based on Taylor Kriging and evolutionary algorithm
چکیده انگلیسی

This paper develops a simulation optimization algorithm based on Taylor Kriging and evolutionary algorithm (SOAKEA) for simulation models with high computational expenses. In SOAKEA, an evolutionary algorithm is used to search for optimal solutions of a simulation model, and Taylor Kriging temporarily serves as a surrogate fitness function of this evolutionary algorithm to evaluate solutions. Taylor Kriging is an enhanced version of Kriging where Taylor expansion is used to approximate the drift function of Kriging, and it improves the interpolation accuracy of Kriging. The structures and properties of SOAKEA are analyzed. A combination correction strategy is created, and it effectively reduces the computational expense of SOAKEA. The empirical comparison of SOAKEA with some other well-known metaheuristics is conducted, and the proposed SOAKEA uses particle swam optimization, a population-based evolutionary algorithm, to solve four simulation problems based on multimodal benchmark functions. The results indicate that SOAKEA has significant advantages in optimizing simulation models with high computational expenses.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 11, Issue 4, June 2011, Pages 3451–3462
نویسندگان
, ,