| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4964947 | 1447936 | 2017 | 13 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												The attractor recurrent neural network based on fuzzy functions: An effective model for the classification of lung abnormalities
												
											ترجمه فارسی عنوان
													شبکه عصبی مکرر جذبی بر اساس توابع فازی: یک مدل موثر برای طبقه بندی اختلالات ریه 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												صداهای ریه، شبکههای عصبی مجدد جذب شده، توابع فازی، تجزیه و تحلیل کوانتومی عود،
																																							
												موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													 نرم افزارهای علوم کامپیوتر
												
											چکیده انگلیسی
												The respiratory system dynamic is of high significance when it comes to the detection of lung abnormalities, which highlights the importance of presenting a reliable model for it. In this paper, we introduce a novel dynamic modelling method for the characterization of the lung sounds (LS), based on the attractor recurrent neural network (ARNN). The ARNN structure allows the development of an effective LS model. Additionally, it has the capability to reproduce the distinctive features of the lung sounds using its formed attractors. Furthermore, a novel ARNN topology based on fuzzy functions (FFs-ARNN) is developed. Given the utility of the recurrent quantification analysis (RQA) as a tool to assess the nature of complex systems, it was used to evaluate the performance of both the ARNN and the FFs-ARNN models. The experimental results demonstrate the effectiveness of the proposed approaches for multichannel LS analysis. In particular, a classification accuracy of 91% was achieved using FFs-ARNN with sequences of RQA features.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 84, 1 May 2017, Pages 124-136
											Journal: Computers in Biology and Medicine - Volume 84, 1 May 2017, Pages 124-136
نویسندگان
												Mohammad Bagher Khodabakhshi, Mohammad Hassan Moradi, 
											