کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4964996 | 1447932 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Seizure detection from EEG signals using Multivariate Empirical Mode Decomposition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present a data driven approach to classify ictal (epileptic seizure) and non-ictal EEG signals using the multivariate empirical mode decomposition (MEMD) algorithm. MEMD is a multivariate extension of empirical mode decomposition (EMD), which is an established method to perform the decomposition and time-frequency (TâF) analysis of non-stationary data sets. We select suitable feature sets based on the multiscale TâF representation of the EEG data via MEMD for the classification purposes. The classification is achieved using the artificial neural networks. The efficacy of the proposed method is verified on extensive publicly available EEG datasets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 88, 1 September 2017, Pages 132-141
Journal: Computers in Biology and Medicine - Volume 88, 1 September 2017, Pages 132-141
نویسندگان
Asmat Zahra, Nadia Kanwal, Naveed ur Rehman, Shoaib Ehsan, Klaus D. McDonald-Maier,