کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4965237 | 1365029 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An efficient data processing framework for mining the massive trajectory of moving objects
ترجمه فارسی عنوان
چارچوب پردازش اطلاعات کارآمد برای استخراج مسیر عظیم از اشیاء متحرک
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
اطلاعات بزرگ، مسیر جابجایی حرکتی، مدل مشارکت فشرده سازی، ارجاع خطی موازی، دو مرحله گسسته سازگار،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Recently, there has been increasing development of positioning technology, which enables us to collect large scale trajectory data for moving objects. Efficient processing and analysis of massive trajectory data has thus become an emerging and challenging task for both researchers and practitioners. Therefore, in this paper, we propose an efficient data processing framework for mining massive trajectory data. This framework includes three modules: (1) a data distribution module, (2) a data transformation module, and (3) a high performance I/O module. Specifically, we first design a two-step consistent hashing algorithm, which takes into account load balancing, data locality, and scalability, for a data distribution module. In the data transformation module, we present a parallel strategy of a linear referencing algorithm with reduced subtask coupling, easy-implemented parallelization, and low communication cost. Moreover, we propose a compression-aware I/O module to improve the processing efficiency. Finally, we conduct a comprehensive performance evaluation on a synthetic dataset (1.114Â TB) and a real world taxi GPS dataset (578Â GB). The experimental results demonstrate the advantages of our proposed framework.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers, Environment and Urban Systems - Volume 61, Part B, January 2017, Pages 129-140
Journal: Computers, Environment and Urban Systems - Volume 61, Part B, January 2017, Pages 129-140
نویسندگان
Yuanchun Zhou, Yang Zhang, Yong Ge, Zhenghua Xue, Yanjie Fu, Danhuai Guo, Jing Shao, Tiangang Zhu, Xuezhi Wang, Jianhui Li,