کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4965257 | 1448280 | 2017 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A training image evaluation and selection method based on minimum data event distance for multiple-point geostatistics
ترجمه فارسی عنوان
ارزیابی و انتخاب روش آموزش تصویری بر اساس حداقل فاصله رویداد داده ها برای آمار جغرافیایی چند نقطه ای
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
آمار جغرافیایی چند نقطه ای تصاویر آموزشی نامزد شده، ارزیابی و انتخاب مطلوب، حداقل فاصله رویداد داده،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
A training image (TI) can be regarded as a database of spatial structures and their low to higher order statistics used in multiple-point geostatistics (MPS) simulation. Presently, there are a number of methods to construct a series of candidate TIs (CTIs) for MPS simulation based on a modeler's subjective criteria. The spatial structures of TIs are often various, meaning that the compatibilities of different CTIs with the conditioning data are different. Therefore, evaluation and optimal selection of CTIs before MPS simulation is essential. This paper proposes a CTI evaluation and optimal selection method based on minimum data event distance (MDevD). In the proposed method, a set of MDevD properties are established through calculation of the MDevD of conditioning data events in each CTI. Then, CTIs are evaluated and ranked according to the mean value and variance of the MDevD properties. The smaller the mean value and variance of an MDevD property are, the more compatible the corresponding CTI is with the conditioning data. In addition, data events with low compatibility in the conditioning data grid can be located to help modelers select a set of complementary CTIs for MPS simulation. The MDevD property can also help to narrow the range of the distance threshold for MPS simulation. The proposed method was evaluated using three examples: a 2D categorical example, a 2D continuous example, and an actual 3D oil reservoir case study. To illustrate the method, a C++ implementation of the method is attached to the paper.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Geosciences - Volume 104, July 2017, Pages 35-53
Journal: Computers & Geosciences - Volume 104, July 2017, Pages 35-53
نویسندگان
Wenjie Feng, Shenghe Wu, Yanshu Yin, Jiajia Zhang, Ke Zhang,