کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4965384 | 1448279 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new method for geochemical anomaly separation based on the distribution patterns of singularity indices
ترجمه فارسی عنوان
یک روش جدید برای جداسازی آنومالی ژئوشیمیایی براساس الگوهای توزیع شاخص های تکینگی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Singularity analysis is one of the most important models in the fractal/multifractal family that has been demonstrated as an efficient tool for identifying hybrid distribution patterns of geochemical data, such as normal and multifractal distributions. However, the question of how to appropriately separate these patterns using reasonable thresholds has not been well answered. In the present study, a new method termed singularity-quantile (S-Q) analysis was proposed to separate multiple geochemical anomaly populations based on integrating singularity analysis and quantile-quantile plot (QQ-plot) analysis. The new method provides excellent abilities for characterizing frequency distribution patterns of singularity indices by plotting singularity index quantiles vs. standard normal quantiles. From a perspective of geochemical element enrichment processes, distribution patterns of singularity indices can be evidently separated into three groups by means of the new method, corresponding to element enrichment, element generality and element depletion, respectively. A case study for chromitite exploration based on geochemical data in the western Junggar region (China), was employed to examine the potential application of the new method. The results revealed that the proposed method was very sensitive to the changes of singularity indices with three segments when it was applied to characterize geochemical element enrichment processes. And hence, the S-Q method can be considered as an efficient and powerful tool for separating hybrid geochemical anomalies on the basis of statistical and inherent fractal/multifractal properties.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Geosciences - Volume 105, August 2017, Pages 139-147
Journal: Computers & Geosciences - Volume 105, August 2017, Pages 139-147
نویسندگان
Yue Liu, Kefa Zhou, Qiuming Cheng,