کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4965924 1448681 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A meshless generalized finite difference method for inverse Cauchy problems associated with three-dimensional inhomogeneous Helmholtz-type equations
ترجمه فارسی عنوان
یک روش متمایز محدود به منظور حل معکوس برای معادلات کوشی معکوس با سه بعدی معادلات هلمولتز نامتغیر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
The generalized finite difference method (GFDM) is a relatively new domain-type meshless method for the numerical solution of certain boundary value problems. The method involves a coupling between the Taylor series expansions and weighted moving least-squares method. The main idea here is to fully inherit the high-accuracy advantage of the former and the stability and meshless attributes of the latter. This paper makes the first attempt to apply the method for the numerical solution of inverse Cauchy problems associated with three-dimensional (3D) Helmholtz-type equations. Numerical results for three benchmark examples involving Helmholtz and modified Helmholtz equations in both smooth and piecewise smooth 3D geometries have been analyzed. The convergence, accuracy and stability of the method with respect to increasing the number of scatted nodes inside the whole domain and decreasing the amount of noise added into the input data, respectively, have been well-studied.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Analysis with Boundary Elements - Volume 82, September 2017, Pages 162-171
نویسندگان
, , , , ,