کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4966049 1448685 2017 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical simulation of 3D nonlinear Schrödinger equations by using the localized method of approximate particular solutions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Numerical simulation of 3D nonlinear Schrödinger equations by using the localized method of approximate particular solutions
چکیده انگلیسی
In this paper, we describe a novel sparse meshless approach to the simulations of three-dimensional time-dependent nonlinear Schrödinger equations. Our procedure is implemented in two successive steps. In the first step, the implicit-Euler scheme is applied for approximating the functional dependence of the solution on the temporal variables. Then, in the second step, the novel localized method of approximate particular solutions (LMAPS) is utilized for highly accurate and efficient numerical approximations of spatial systems. In the implementation of the LMAPS, the closed form particular solutions for the Laplace operator using the Gaussian radial basis function are used. Numerical experiments are provided to verify the stability and efficiency of this method. In summary, the proposed algorithm is efficient and stable, and the magnitude of the error is at about 10−3 for 3D nonlinear Schrödinger problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Analysis with Boundary Elements - Volume 78, May 2017, Pages 20-25
نویسندگان
, , , ,