کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4966436 | 1365121 | 2016 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Helmholtz principle based supervised and unsupervised feature selection methods for text mining
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
One of the important problems in text classification is the high dimensionality of the feature space. Feature selection methods are used to reduce the dimensionality of the feature space by selecting the most valuable features for classification. Apart from reducing the dimensionality, feature selection methods have potential to improve text classifiers' performance both in terms of accuracy and time. Furthermore, it helps to build simpler and as a result more comprehensible models. In this study we propose new methods for feature selection from textual data, called Meaning Based Feature Selection (MBFS) which is based on the Helmholtz principle from the Gestalt theory of human perception which is used in image processing. The proposed approaches are extensively evaluated by their effect on the classification performance of two well-known classifiers on several datasets and compared with several feature selection algorithms commonly used in text mining. Our results demonstrate the value of the MBFS methods in terms of classification accuracy and execution time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Processing & Management - Volume 52, Issue 5, September 2016, Pages 885-910
Journal: Information Processing & Management - Volume 52, Issue 5, September 2016, Pages 885-910
نویسندگان
Melike Tutkan, Murat Can Ganiz, Selim AkyokuÅ,