کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4966446 1365122 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Continuous space models for CLIR
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Continuous space models for CLIR
چکیده انگلیسی
We present and evaluate a novel technique for learning cross-lingual continuous space models to aid cross-language information retrieval (CLIR). Our model, which is referred to as external-data composition neural network (XCNN), is based on a composition function that is implemented on top of a deep neural network that provides a distributed learning framework. Different from most existing models, which rely only on available parallel data for training, our learning framework provides a natural way to exploit monolingual data and its associated relevance metadata for learning continuous space representations of language. Cross-language extensions of the obtained models can then be trained by using a small set of parallel data. This property is very helpful for resource-poor languages, therefore, we carry out experiments on the English-Hindi language pair. On the conducted comparative evaluation, the proposed model is shown to outperform state-of-the-art continuous space models with statistically significant margin on two different tasks: parallel sentence retrieval and ad-hoc retrieval.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Processing & Management - Volume 53, Issue 2, March 2017, Pages 359-370
نویسندگان
, , ,