کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
496655 862866 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A multiclass/multilabel document categorization system: Combining multiple classifiers in a reduced dimension
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A multiclass/multilabel document categorization system: Combining multiple classifiers in a reduced dimension
چکیده انگلیسی

This article presents a multiclassifier approach for multiclass/multilabel document categorization problems. For the categorization process, we use a reduced vector representation obtained by SVD for training and testing documents, and a set of k-NN classifiers to predict the category of test documents; each k-NN classifier uses a reduced database subsampled from the original training database. To perform multilabeling classifications, a new approach based on Bayesian weighted voting is also presented. The good results obtained in the experiments give an indication of the potential of the proposed approach.


► Multiclassifier approach for multiclass/multilabel document categorization problems.
► A reduced vector representation obtained by SVD is used to represent documents.
► A set of k-NN classifiers is used to predict the category of test documents.
► Bayesian weighted voting is used to perform multilabeling classifications.
► The classifier was evaluated for the Reuters-21578 ModApte split testing collection.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 11, Issue 8, December 2011, Pages 4981–4990
نویسندگان
, , , ,