کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4967398 | 1449368 | 2017 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A data-driven adaptive Reynolds-averaged Navier-Stokes k-Ï model for turbulent flow
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a new data-driven adaptive computational model for simulating turbulent flow, where partial-but-incomplete measurement data is available. The model automatically adjusts the closure coefficients of the Reynolds-averaged Navier-Stokes (RANS) k-Ï turbulence equations to improve agreement between the simulated flow and the measurements. This data-driven adaptive RANS k-Ï (D-DARK) model is validated with 3 canonical flow geometries: pipe flow, backward-facing step, and flow around an airfoil. For all test cases, the D-DARK model improves agreement with experimental data in comparison to the results from a non-adaptive RANS k-Ï model that uses standard values of the closure coefficients. For the pipe flow, adaptation is driven by mean stream-wise velocity data from 42 measurement locations along the pipe radius, and the D-DARK model reduces the average error from 5.2% to 1.1%. For the 2-dimensional backward-facing step, adaptation is driven by mean stream-wise velocity data from 100 measurement locations at 4 cross-sections of the flow. In this case, D-DARK reduces the average error from 40% to 12%. For the NACA 0012 airfoil, adaptation is driven by surface-pressure data at 25 measurement locations. The D-DARK model reduces the average error in surface-pressure coefficients from 45% to 12%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 345, 15 September 2017, Pages 111-131
Journal: Journal of Computational Physics - Volume 345, 15 September 2017, Pages 111-131
نویسندگان
Zhiyong Li, Huaibao Zhang, Sean C.C. Bailey, Jesse B. Hoagg, Alexandre Martin,