کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4967401 1449368 2017 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new method for reconstruction of cross-sections using Tucker decomposition
ترجمه فارسی عنوان
یک روش جدید برای بازسازی مقاطع با استفاده از تجزیه توکر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
The full representation of a d-variate function requires exponentially storage size as a function of dimension d and high computational cost. In order to reduce these complexities, function approximation methods (called reconstruction in our context) are proposed, such as: interpolation, approximation, etc. The traditional interpolation model like the multilinear one, has this dimensionality problem. To deal with this problem, we propose a new model based on the Tucker format - a low-rank tensor approximation method, called here the Tucker decomposition. The Tucker decomposition is built as a tensor product of one-dimensional spaces where their one-variate basis functions are constructed by an extension of the Karhunen-Loève decomposition into high-dimensional space. Using this technique, we can acquire, direction by direction, the most important information of the function and convert it into a small number of basis functions. Hence, the approximation for a given function needs less data than that of the multilinear model. Results of a test case on the neutron cross-section reconstruction demonstrate that the Tucker decomposition achieves a better accuracy while using less data than the multilinear interpolation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 345, 15 September 2017, Pages 189-206
نویسندگان
, , , ,