کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
496758 | 862869 | 2011 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Reinforcement evolutionary learning using data mining algorithm with TSK-type fuzzy controllers
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Reinforcement evolutionary learning using data mining algorithm (R-ELDMA) with a TSK-type fuzzy controller (TFC) for solving reinforcement control problems is proposed in this study. R-ELDMA aims to determine suitable rules in a TFC and identify suitable and unsuitable groups for chromosome selection. To this end, the proposed R-ELDMA entails both structure and parameter learning. In structure learning, the proposed R-ELDMA adopts our previous research - the self-adaptive method (SAM) - to determine the suitability of TFC models with different fuzzy rules. In parameter learning, the data-mining based selection strategy (DSS), which proposes association rules, is used. More specifically, DSS not only determines suitable groups for chromosomes selection but also identifies unsuitable groups to be avoided selecting chromosomes to construct a TFC. Illustrative examples are presented to show the performance and applicability of the proposed R-ELDMA.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 11, Issue 3, April 2011, Pages 3247-3259
Journal: Applied Soft Computing - Volume 11, Issue 3, April 2011, Pages 3247-3259
نویسندگان
Chi-Yao Hsu, Yung-Chi Hsu, Sheng-Fuu Lin,