کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4967590 1449379 2017 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools
چکیده انگلیسی

First- and second-order accurate numerical methods, implemented for CPUs, underpin the majority of industrial CFD solvers. Whilst this technology has proven very successful at solving steady-state problems via a Reynolds Averaged Navier-Stokes approach, its utility for undertaking scale-resolving simulations of unsteady flows is less clear. High-order methods for unstructured grids and GPU accelerators have been proposed as an enabling technology for unsteady scale-resolving simulations of flow over complex geometries. In this study we systematically compare accuracy and cost of the high-order Flux Reconstruction solver PyFR running on GPUs and the industry-standard solver STAR-CCM+ running on CPUs when applied to a range of unsteady flow problems. Specifically, we perform comparisons of accuracy and cost for isentropic vortex advection (EV), decay of the Taylor-Green vortex (TGV), turbulent flow over a circular cylinder, and turbulent flow over an SD7003 aerofoil. We consider two configurations of STAR-CCM+: a second-order configuration, and a third-order configuration, where the latter was recommended by CD-adapco for more effective computation of unsteady flow problems. Results from both PyFR and STAR-CCM+ demonstrate that third-order schemes can be more accurate than second-order schemes for a given cost e.g. going from second- to third-order, the PyFR simulations of the EV and TGV achieve 75× and 3× error reduction respectively for the same or reduced cost, and STAR-CCM+ simulations of the cylinder recovered wake statistics significantly more accurately for only twice the cost. Moreover, advancing to higher-order schemes on GPUs with PyFR was found to offer even further accuracy vs. cost benefits relative to industry-standard tools.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 334, 1 April 2017, Pages 497-521
نویسندگان
, , ,