کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4967672 1449381 2017 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A highly scalable massively parallel fast marching method for the Eikonal equation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A highly scalable massively parallel fast marching method for the Eikonal equation
چکیده انگلیسی
The fast marching method is a widely used numerical method for solving the Eikonal equation arising from a variety of scientific and engineering fields. It is long deemed inherently sequential and an efficient parallel algorithm applicable to large-scale practical applications is not available in the literature. In this study, we present a highly scalable massively parallel implementation of the fast marching method using a domain decomposition approach. Central to this algorithm is a novel restarted narrow band approach that coordinates the frequency of communications and the amount of computations extra to a sequential run for achieving an unprecedented parallel performance. Within each restart, the narrow band fast marching method is executed; simple synchronous local exchanges and global reductions are adopted for communicating updated data in the overlapping regions between neighboring subdomains and getting the latest front status, respectively. The independence of front characteristics is exploited through special data structures and augmented status tags to extract the masked parallelism within the fast marching method. The efficiency, flexibility, and applicability of the parallel algorithm are demonstrated through several examples. These problems are extensively tested on six grids with up to 1 billion points using different numbers of processes ranging from 1 to 65536. Remarkable parallel speedups are achieved using tens of thousands of processes. Detailed pseudo-codes for both the sequential and parallel algorithms are provided to illustrate the simplicity of the parallel implementation and its similarity to the sequential narrow band fast marching algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 332, 1 March 2017, Pages 333-362
نویسندگان
, ,