کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4967761 1449383 2017 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic-Preserving Particle-In-Cell methods for the Vlasov-Maxwell system in the quasi-neutral limit
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Asymptotic-Preserving Particle-In-Cell methods for the Vlasov-Maxwell system in the quasi-neutral limit
چکیده انگلیسی
In this article, we design Asymptotic-Preserving Particle-In-Cell methods for the Vlasov-Maxwell system in the quasi-neutral limit, this limit being characterized by a Debye length negligible compared to the space scale of the problem. These methods are consistent discretizations of the Vlasov-Maxwell system which, in the quasi-neutral limit, remain stable and are consistent with a quasi-neutral model (in this quasi-neutral model, the electric field is computed by means of a generalized Ohm law). The derivation of Asymptotic-Preserving methods is not straightforward since the quasi-neutral model is a singular limit of the Vlasov-Maxwell model. The key step is a reformulation of the Vlasov-Maxwell system which unifies the two models in a single set of equations with a smooth transition from one to another. As demonstrated in various and demanding numerical simulations, the Asymptotic-Preserving methods are able to treat efficiently both quasi-neutral plasmas and non-neutral plasmas, making them particularly well suited for complex problems involving dense plasmas with localized non-neutral regions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 330, 1 February 2017, Pages 467-492
نویسندگان
, , ,